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Suppose spherical particles are embedded in an opaque matrix. Sphere radii are indepen- 
dent random variables with unknown density jI We wish to estimate f from the circular 
profiles of the spheres intersecting a plane section through the material. A recent proposal by 
C. C. Taylor (.I. Microscopy 132, 57 (1983)) is to estimate f by stereologically unfolding a 
kernel estimator derived from the observed profiles. We give some theoretical results for the 
bias and variance of this estimator and draw some sharp contrasts with ordinary density 
estimation. The unfolding causes the estimator to converge at a surprisingly slow rate, but it is 
also shown that this slow convergence is intrinsic to the problem and is not a deticiency of 
Taylor’s method. The arguments are extended to cover also some other cases of stereological 
unfolding where a theoretical closed-form solution exists. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Suppose that spherical particles are embedded in an opaque matrix. The radii are 
independent and identically distributed random variables, with unknown 
probability density $ We wish to estimate f from the observed circular profiles of 
the particles in a cross section through the material. This so-called “unfolding” 
problem is a very well-known problem of stereology, see, e.g., Coleman [3] or 
Ripley [9, Chap. 91 for reviews. 

Recently Taylor [12] proposed a new solution to this problem based on the 
kernel method for nonparametric density estimation. He presented examples of the 
practical implementation of his method, but he did not discuss such theoretical 
properties as the bias and variance of the estimator. Our purpose here is to give an 
outline of how such results may be derived and to draw attention to a surprising 
way in which they differ from the corresponding results for ordinary nonparametric 
density estimation. The practical consequences of these results are that a smoothing 
parameter called the “window width” or “band width” must be chosen considerably 
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larger than in ordinary nonparametric density estimation, and there is a 
corresponding loss of accuracy in the estimator itself. Moreover, this loss of 
accuracy is not a deficiency of Taylor’s particular procedure, but in a certain well- 
defined sense can be shown to be inherent to the problem of stereological unfolding. 

Let f denote the density of sphere radius, with m =Jxf(x) dx the mean sphere 
radius, and let g denote the corresponding density of random cross-sectional radius. 
Then g is derived from f by the Abel integral equation 

d.d=m-lJm ( x2-y’)-“‘f(x)dx, 
Y 

(1.1) 

with inverse 

f(x)= -2n-‘rnz (1.2-x21-1i2gW4}. (1.2) 

Equations (1.1) and (1.2) are standard equations for this problem; note that the 
assumption of independent sphere centres is not strictly consistent with the notion 
of nonoverlapping spheres, but these equations are valid if overlapping is permitted 
or approximately valid if there is no overlapping but the sphere density is low. 
Taylor’s Cl23 method was first to estimate g by the kernel method 

g(y)= (n/l)-’ i K(h-‘(y - yi)) (1.3) 
i=l 

and then to apply (1.2) to obtain an estimate 3 off: In (1.3), Y,, . . . . Y, are the 
observed radii of circular profiles, K is a kernel function (usually a nonnegative 
function satisfying j K(x) dx = 1) and h is the window width. The choice of window 
width controls the smoothness of the resulting estimate, and is well known to be an 
important factor in nonparametric density estimation (see, e.g., Wegman [13], 
Fryer [S]). We shall show that this choice is also important here, but that both the 
optimal window width and the corresponding rate of convergence of the estimator 
are different from ordinary density estimation. 

As well as Taylor’s procedure, we shall consider a variant which is easier to 
analyse mathematically, and perhaps more natural in practice as well. Define 
fi(x) = (2~‘/~)-‘f(x~/~), gi(y) = (2y”‘))’ g(y’12); these are the densities of squared 
radii for spheres and circles, respectively. Then (1.1) and (1.2) become 

glW = Vm)-’ Jrn (x-.V”fdx) dx, 
Y 

(1.4) 

(1.5) 
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This suggests estimating g, by a Kernel estimator 

ifI = (nW’ i w-‘(Y - m (1.6) 
i= I 

and then applying (1.5) to estimate f, by f,. This is more convenient 
mathematically because the integrals in (1.4) and (1.5) are convolution integrals. 
The practical motivation is that c is proportional to the observed cross-sectional 
area, which may be easier to measure than the radius. 

For alternative approaches to the unfolding problem, see in particular Jakeman 
and Anderssen [7], Anderssen and Jakeman [ 11, Kanatani and Ishikawa [8]. 
Jakeman and Anderssen consider, not only the above classical unfolding problem, 
but also a number of related problems for which closed-form solutions exist. These 
problems originated in the work of Santa16 [lo]. Kanatani and Ishikawa [8] 
consider a number of computational approaches both for the classical problem 
described above and for an extension which is relevant when the cross section con- 
sists of thin slice, but they do not consider the kernel method which, in our opinion, 
is a fully viable alternative to the schemes they describe. Some of these related 
problems will be studied in Section 4. For details of the numerical procedure, we 
refer to Taylor [ 121. It is possible to carry out the inversion, (1.2) or (1.5) 
analytically provided the kernel is chosen appropriately, but the computation of the 
kernel density itself may be speeded up by the use of the fast Fourier transform if 
the sample size is very large. Taylor recommends truncating the inversion at the 
smallest order statistic and then resealing so that the integral of the density is 1. He 
also describes a variant of the kernel procedure in which the window width varies 
over the sample, but we shall not consider that here. 

2. BIAS AND VARIANCE OF THE UNFOLDED KERNEL ESTIMATE 

For simplicity we shall first consider the estimator defined by (1.5) and (1.6), i.e., 

f,(x)=-2(nnh2)-‘mi~l\xm(y-X)-~‘2K(h-yy-Yf))dy. (2.1) 

At this stage we assume that m, the mean off, is known; later we shall remove that 
assumption. The mean off1 is 

E{fl(x)} = -2(nh*)-’ m jrn [a (y-x)-“’ K’(h-‘(y - u)) gl(u) dy du 
-m x 

and, after substituting from (1.4), becomes 

K(z)f,(x - zh) dz. (2.2) 
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Although it is possible to derive (2.2) just by algebraic manipulation, it may help to 
give a quick “symbolic” proof. We may rewrite (1.4) and (1.5) as 

g, = V-1, f, = T-k,, 

where T is an operator and T-’ is its inverse. Moreover, the expression 

E{B,(y)}=h-l/m K(h~l(y-u))g,(u)dv=frn K(z)g,(y-zh)dz 
--oo -cc 

may also be thought of as an operator acting on g,; thus E{ ii > = Sg,, say. 
Combining these formulae, 

E{fl} =E{T-‘&} = T-‘STY,. (2.3) 

Now the operators S, T, and T-’ are all convolution operators and therefore 
commute. In other words, we can interchange the order of S and T in (2.3) and so 
cancel T with T-l. Equation (2.3) then reduces to E(f, } = S’i, which is (2.2). 

Now suppose that the kernel function K satisfies 

j=O, 

j=l , . . . . k - 1, 

j= k, 

(2.4) 

for some integer k > 1. In most practical cases, in particular if K is a nonnegative 
function, we will have k = 2, but there are some theoretical grounds [2] for 
preferring a kernel with k > 2. In this case, taking the first k terms of a Taylor 
expansion off and applying (2.4) to (2.2), we have 

E{fl(X)} -f,(x) = (-4 yl*‘(x)+ o(p), (2.5) 

So far, our results are identical with those for ordinary density estimation, in which 
we have a sample directly from the density f, ; see, e.g., Bartlett [2], Singh [ 111, 

Now let us consider the variance of fi. If we define a new kernel 

K,(x)=J1~~~‘-“*K(x+y)dy, -co<xx<, 

then we may write 

j;(x)= -2(nnh3’*)-’ m i Kl(h-‘(x- q?)) 
i=l 
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from which we deduce 

n var(f,(x)} =4n~*h~*m* {m J+) g,(x- oh) do- {@,,(x))*. (2.6) -cm 

The second term tends toy:(x) as h + 0, and hence is negligible compared with the 
first. Define 

Substituting from (2.7) in (2.6) and letting h + 0, we obtain 

n var(f,(x)} = 7c -*he*m*C,g,(x) + o(h-*) (2.8) 

as h + 0. It is here that we see a substantial difference from ordinary density 
estimation. In ordinary density estimation, the variance turns out to be of the order 
of n-‘hk’ whereas here it is of the order of n-‘he*. 

We now consider the consequences of these results for mean squared error. From 
(2.5) and (2.8) we have 

xaln-1h-2+a,h2k, Q-9) 

where ~1, =rc P2m2C,g,(x) and a2 = {dkf(lk)(x)/k!}*. The right-hand side of (2.9) is 
minimised by h = hi+ = /I, n - v(*~ + *), where /I, = (a, /ka,) 1’(2k ’ *). The corresponding 
mean squared error is of O(n- 2kl(2k + 2)). In ordinary density estimation, the 
asymptotically optimal window width is a constant multiple of nP “(2k+ ‘) and the 
corresponding mean squared error is of O(K~‘(*~+ “) [ll]. Thus the optimal 
window width and mean squared error are both a larger order of magnitude in the 
unfolding problem. 

Similar results hold for Taylor’s estimatorx defined by combining (1.2) and (1.3). 
In this case we find that 

E{f(x)} -f(x) = (- h)k ;<‘k)(x) + @k), 

n var(f(x)} E 2n-2h-2m2C,xp ‘g(x). (2.11) 

These are the same orders of magnitude as for j\,, and thus lead to similar 
conclusions about the optimal window width and mean squared error. 

The derivation of (2.10) and (2.11) is considerably more complicated than that of 
(2.5) and (2.8), and we omit all technical details. A technical report is available 
from the second author, giving precise statements and proofs of these formulae. In 
Appendix 1, we list the assumptions required on both the kernel and the density 
function to make our results rigorous. 
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Estimating m. In our analysis so far, we have assumed that m =j xf’(x) d,x is 
known. In practice it will be unknown, but the formula 

E{ YP’} =J^y-‘g(y) dy= n/(2m) 

[9, Chap. 91 suggests the estimator 

It may be shown that 

for any 6 >O. In other words, the rate of convergence of 6 to m is arbitrarily 
close to order n-I’*, which is a faster rate of convergence than that of 3r or j? 
Consequently, G may be substituted for m in the definition off, or j; with no 
change in the asymptotic formulae that have been derived. 

3. OPTIMALITY 

The main conclusion of Section 2 was that, when kernel estimation is applied to 
the unfolding problem, the rate of convergence is slower than in ordinary density 
estimation. From the discussion so far, it is unclear whether this is a peculiarity of 
kernel estimation or is inherent in the problem. In this section we state a theorem 
which indicates that the latter is the case and that there is a sense in which kernel 
estimation achieves the optimal rate of convergence. Proof of the theorem is 
deferred to Appendix 2. 

In establishing optimality it suffices to confine attention to estimates of f,. 
Analogous results for f follow by the obvious transformation. 

For given k > 1 and B> 0, let C,(B) denote the class of densitiesf, with support 
confined to (0, cc ) such that f, and its first k - 1 derivatives exist on (0, co ). and 
f(lk-') is absolutely continuous on (0, co), with the essential supremum of fy) 
bounded by B for 0 <j < k. Let b,(Z,, . . . . Z,) denote a nonparametric estimate of 
fi(xO), for some fixed x,, > 0, based on a random sample Z,, . . . . Z, from the 
distribution with density g,. 

THEOREM. Suppose, for some sequence of positive constants a,,, n > 1, we have 

linm_~fli~~~B)Pg,(I~n(Z~r...,Zn)-f~(x~)ldan}=l. (3.1) 

Then 

lim inf nk’(2k + *)a, = 03. 
n-C.2 (3.2) 
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The interpretation of this result is as follows. The estimator 4, is an arbitrary 
estimator of f,(xO); thus it could be our kernel estimator but it could also be 
something quite different. The class of densities C,(B) is effectively the set of all 
densities whose first k derivatives are bounded by B. Equation (3.1) implies that the 
error in 4, as an estimate of j-,(x0) is at most a,, uniformly over the class C,(B). 
Then (3.2) implies a lower bound on the rate at which a, + 0. In fact, for the kernel 
estimate with window width chosen to minimise the mean squared error, it may be 
shown that (3.2) implies (3.1), and in this sense the kernel estimate is optimal in the 
class of all density estimates based on Z1 , . . . . Z,. 

4. EXTENSION TO SOME RELATED STEREOLOGICAL PROBLEMS 

Jakeman and Anderssen [7] consider a number of other unfolding problems, 
originating in the work of Santa16 [lo], for which a closed-form analytic solution 
exists. There has also been extensive work on the so-called “thin section” problem, 
in which the sphere is intercepted not by a plane but by a section of small but 
positive thickness; see Coleman [3, Section 4.31, Kanatani and Ishikawa [8], 
Jakeman [6]. The extension of the kernel method to these problems is immediate: 
the folded density is estimated by the kernel method from the observed data and is 
then unfolded by means of the analytic inversion formula. In this section we show 
that results, in terms of the optimal window width and corresponding mean 
squared error, hold for these problems which are similar to those for the classical 
unfolding problem described in Section 2. The mathematical treatment in this sec- 
tion is to some extent heuristic. 

Let us first consider the various alternative schemes listed in Table 1 of Jakeman 
and Anderssen [7]. The “spherical” case of their (a)(i) is the classical problem 
already described. The “approximately spherical” case leads to the inversion 
formula 

4a x*(l --p) sin(p7c) N, 
I 

m 
g(x)= - n z’(a) 

vCN, 0,x2 (a-a;x)‘-p da, (4.1) 

where z(a) is the observed density of cross-sectional area and a,,, p, v, N,, and C 
are constants. Evaluating this for fixed x and ignoring the constants, we see that it 
is again of the form (1.5) but with the power - $ replaced by - 1 + p. Suppose that 
we estimate z( .) by a kernel estimator 

Z(a) =-L 
nh $, K(?) 

where A,, . . . . A,, are observed cross-sectional areas and K is a kernel function 
satisfying (2.4) and then substitute into (4.1) to estimate g( .). The mean squared 
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error is minimised by taking h proportional to n ‘i’2k+1 2flc), and then becomes of 
O(n- ZkJ(2k + 3 2~) 

1. 

The other problems listed in Jakeman and Anderssen’s Table 1 are the types 
already studied. Their problems (a)(ii) and (b)(i) both involve inversion formulae 
of the same kind as (1.2), and hence are also covered by the results of our Sec- 
tions 2 and 3, while in their problems (b)(ii) and (c) the inversion formula involves 
nothing more than differentiation of the estimated density, and hence is covered by 
the results of Singh [ 111. 

We now consider the “thin section” problem. As stated by Jakeman [6], the 
integral equation relating the folded and unfolded densities, g andf, is 

(2~+Mc.)=2yj~ ( x2 -y’)-“‘f(x) dx + f(x), 
.) 

(4.2) 

where t is the thickness of the section. Note that Coleman [3] considers a further 
generalisation in which there is a truncation point, or smallest observable radius, 
below which a sphere is not observed at all. The inversion formula for (4.2) is 

f(x) = - (2/7c)“‘(2a + t) t-lx jm u { 2n(y2 ; “‘)‘:‘} $ {y} dy (4.3) 
x 

(Jakeman’s Eq. (7)), where 

u(x) = ex2/2 e ~ IV2 dt, I 
cc 

a= xf(x) dx. 
0 

(4.4) 

Writingf(x) = 2xf,(x2), g(y) = 2ygr(y*) as before, (4.2) and (4.3) become 

(2a + f) g,(Y) = jm (x -Y)v”‘fi(x) + tf(y), (4.5) 
? 

f,(x)= -(2/7~)“~(2a+t)tr’~~ u{2”(‘;x)“2}g;(y)dy. (4.6) 
.T 

We again assume that g, is estimated by 2,) given by (1.6), and that this substituted 
into (4.6) to obtain an estimatef,. 

We now make heuristic calculations of the bias and variance of this estimator at 
a specific value of x. Since the operator taking fi into g, is still a convolution 
operator, the argument of Section 2 again shows that the bias infI is given by (2.5). 
For the variance, define 

K,,(x)= -(2/7c)“‘(2a+t)t-’ jom ~{~~(~~)“‘jK’(y+x)dy (4.7) 
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and note that 

f,(x)=(nh)-’ f K/Jkl(X- WI. 
i=l 

By a similar argument to that in Section 2, 

n varf,(x) -gl(x) h-’ la G(z) dz. 
--a0 

We could now construct an asymptotic theory as n -+ co, h -+ 0 for fixed I, but in 
practice t will be small, and the limit t + 0 corresponds to the classical problem in 
Section 2. We therefore consider various forms of asymptotic relations as n + cc, 
h + 0, and t --t 0. There are three cases: 

Case A. hl’*f-’ + 0, u{2rr(hy)“* t-l} + u(0) = (7c/2)“*, so 

L(x) N cw) K(x). 

Thus varj\l(x) = O(n-‘h-‘t-*) in terms of n, h, and t. 

Case B. h’l*t-‘-+ cc 3 ~{27t(hy)~‘* t-‘} - t(hy)-“*(2n)-’ by virtue of the 
relation U(X) - x ~ ‘, x + co. Thus in this case 

K,,(x) - -(2/n’)“‘&“*K,(~), 

where K, is as in Section 2. Therefore, varfr(x) = O(n ~ ‘A-*). 

Case C. 2nh’/*tr’ -+ c, 0 < c < co. Then 

KG) - - (2/n)“* 2at-’ j- z&y”*) K’(y +x) dx. 
0 

We now have varf,(x) = O(n-‘h-It-*) = O(n-‘k2), where the constants of 
proportionality depend on c. 

Case C is perhaps the most interesting case, since Cases A and B are limiting 
cases corresponding to c + 0, c + co, respectively. The broad conclusion is that 
similar results hold to those in the classical problem, with bias of U(hk), and 
variance of O(n-‘h-‘), but with constants of proportionality which also depend 
on t. 

5. CONCLUSIONS 

Although our results have been asymptotic in their character, there are some 
clear practical implications. 

1. The optimal window width is of a larger order of magnitude for unfolding 
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problems than for ordinary density estimation. If k= 2 (most kernels used in 
practice have k =2) then the optimal window width for the classical unfolding 
problem is O(n -I@‘), instead of O(n - ‘I’) for ordinary density estimation. 

2. If the optimal window width is used, then the mean squared error of the 
estimate is of a larger order of magnitude than for ordinary density 
estimation--O(n-2’3) instead of O(n P4’5) when k = 2. 

3. The results of Section 3 show that this increase of asymptotic mean 
squared error is inherent in the problem and is not a peculiarity of the kernel 
method of estimation. 

4. Similar conclusions hold for other unfolding problems with explicit 
inversion formulae. 

5. Taken together, the results show the statistical implications of the “ill- 
posed” nature of the problem. It is well known that solving Abel’s integral equation 
is an ill-posed problem and that this creates difficulties for numerical solution. The 
kernel method apparently gets round these difficulties, provided a smooth kernel is 
used. The ill-posedness is still a problem, however, because of the more subtle 
statistical difficulty which we have highlighted in this paper. 

APPENDIX 1: STATEMENT OF ASSUMPTIONS 

Assumptions on the kernel, We assume that the kernel function K satisfies (2.4) 
and 

s yrn I.# (IWx)l + IxK’(x)l> dx < cc 

for some positive integer k 2 2, and that both K and its derivative K’ are bounded, 
continuous functions. 

Assumptions on the density. Each of the formulae in Section 2 requires 
additional assumptions on the unknown density f, but we believe that they are all 
reasonable assumptions which should not inhibit the practical application of the 
method. For (2.5) we assume that fand hencef, are k times continuously differen- 
tiable in an interval containing x, and that f(x) is bounded on 0 <x < co. For 
(2.10) we assume that f,f’, . . ..fCk) are all bounded on 0 < x < 00 and 

I 
X+6 

(Y-W If’k’(Ykf%) I dY< 00 J 

for some E > 0. Equations (2.8) and (2.11) both require that f(x) is bounded on 
0 <xx co. Equation (2.12) requires only that f(x) is bounded on O-=x< E, for 
some E > 0. 
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APPENDIX 2: PROOF OF THEOREM 

Fix x,,, B, and I > 0. We shall construct densities pO, p, E C,(B), with p. fixed and 
p,, depending on n, such that 

po(x,) - p,(xo) = In ~ k’(2k + 2), (Al 

and the corresponding folded densities q,, and q,,, obtained via ( 1.4) satisfy 

s om {4n(y)-40(y)}2(40(y)}-1 dy=W-‘) (AZ) 

Our argument is close to that of Farrell [S]. 
For 6 > 0, k = 0, 1, 2, . . . . let Akd denote a function satisfying the conditions: 

(i) if x $ [ - 2k6, 2k6] then AkB(x) = 0, 

(ii) d,,(x) iS an odd fUrdOn of x, 

(iii) the (k - 1) th derivative of A,, is absolutely continuous, 

(iv) suPxeR lAk6(x)I = 2Y6k, where y = (k - l)(k - 2)/2, 
(v) there exists a real sequence { ck, k > 1 } such that 

5 m A;,(x)dx=~~B(~~+‘), 
-m 

(Vi) d,,(6x) = GkAk(x), where dk is a function not depending on 6. 

The existence of a function satisfying (it(v) is proved in Section 2a of Farrell [4] 
and Farrell’s construction incidentally satisfies (vi) also. Let p,, E C,(B/2) have k 
continuous derivatives on (0, co) and vanish outside a compact set and have the 
property p,(x) E a > 0 for 0 < x < x0 + E, some .s>O. Define p,(x)=p,(x)+ 
AkS(x - x0 - zkp ‘6), where 6 =6(n) --t 0 as n + co. Set 

s 

cc 
mi= x”‘p,(x) dx and 

0 
qi(y)=(2mi)-1 1): (x-~)-“~p~(x)dx. 

Then m,q,,( y) - m,q,( y) vanishes outside (0, x0 + s/2), provided 6 is sufficiently 
small. Furthermore, qo(y) is bounded away from zero uniformly in y E (0, x0 + s/2). 
Therefore for a constant C > 0, 

J= om {m,q,(y)-moqo(y)}2{qo(y)}-1 dy I 
<c h-Y)-1’2(X2--y)-1’2Ak&,-Xo-2k-16) 

X dk6(X2-x0- 2k-16) dxl dx2 
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= c#k+2 51 
-Jc 

d,(Z,) dz Ix dk(z2)[2 log{ (X0 + 6Z, + 2k- ‘~3)“~ 
=i 

+ (x0+ Sz, + 2k- ‘S)“2) -log(z,-z,) -log S] dz, 

= 0(Pf2). 

A simpler argument shows that Im, - m,l = O(LIk+‘), and so the left-hand side of 
(A2) equals 0(S2k+2 ). Therefore (A2) holds if 6 = O(n -1’(2kf2)). 

There exists a positive constant ck such that dk( -2k-‘) = ck. If we take 
6 = dn-‘l’2k+2), where d= (A/c,)““, then the left-hand side of (Al) equals 
dk6( -2k-‘8) = dkdk( -2k-‘), which is th e right-hand side. This proves (Al). 

An immediate consequence of (A2) is that 

Therefore, 

&A lh7(Z, 9 ...? -cl) -Pn(Xol d 4J 

d CP,,{ ld”(Z, 9 .--, ZJ -P,(Xo)l d a,>11’2 
L if)1 E,~{~~(Zi)/~O(zi)}2]“2 

d CCP,,{ l4,(Z,, ..., u-A( <a”}11’2 

for some constant C. Assumption (3.1) now implies that PqO{ ld,(Z,, . . . . Z,) - 
p,(x,)l <a,} is bounded away from zero, as well as that P,,((~,(Z,, . . . . Z,) - 
Po(Xo)l G 4 + 1. Hence Ip,(x,) -po(xo)l <2a, for large n, or equivalently, 
a, > (L/2) n Pk’(2k+ 2). Since this is true for all I > 0, we have (3.2). 
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